since (i) and (ii) are also valid for μ_0 and ν_0 . This proves (iii).

As an application of Theorem 3, let μ be real. Then ν is real by (ii). Hence ν = 0. Then μ = 0 by (i). It follows that, for any continuous function h on B, there exists a sequence of polynomials whose real parts converge uniformly to h on B. By the maximum modulus principle, the sequence of real parts must converge uniformly on C, and the limit function will be harmonic on U. Thus we have:

THEOREM 4. Let h be a continuous function on B. Then h can be extended to be continuous on C and harmonic on U, and the extended function can be uniformly approximated on C by real parts of polynomials.

This theorem includes the solution of the Dirichlet problem for C, which is known. The further fact that the resulting harmonic extension of h can be uniformly approximated by real parts of polynomials seems to be new.

As an application of Theorem 4, one can prove the following theorem, 4 whose proof will be given elsewhere:

Theorem 5. If A is a uniformly closed algebra of continuous functions on B, which includes the polynomials, then either each function of A can be extended to be continuous on C and analytic on U, or A consists of all continuous functions on B.

This generalizes a well-known result of Wermer.⁵

- * This work was done with the support of ONR Contract NONR-222(37).
- ¹ A. Zygmund, Trigonometrical Series (New York, 1955).
- ² L. Bieberbach, Lehrbuch der Funktionentheorie (Leipzig, 1930), Vol. 2.
- ³ S. N. Mergelyan, On the Representation of Functions by Series of Polynomials on Closed Sets ("Am. Math. Soc. Translations," No. 85 [1953]).
- ⁴ E. Bishop, On the Structure of Certain Measures, ("Technical Reports," No. 11, ONR Contract NONR-222[37] [1957]).
 - ⁵ J. Wermer, "On Algebras of Continuous Functions," Proc. Am. Math. Soc., 4, 866-869, 1953.

NON-PARALLELIZABILITY OF THE n-SPHERE FOR n > 7

By Michel A. Kervaire

INSTITUTE FOR ADVANCED STUDY

Communicated by N. E. Steenrod, January 23, 1958

We shall show that the recent results of R. Bott^{1, 2}: $\pi_{2q}(U(q)) \approx \mathbb{Z}/q!\mathbb{Z}$ and the periodicity of the stable homotopy groups of SO(n) and U(n) imply the

THEOREM. For $s \ge 3$, the sphere S_{4s-1} of dimension 4s-1 is not parallelizable. Recall that a differentiable closed manifold of dimension n is said to be parallelizable if it admits a continuous field of tangent n-frames. It is well known that S_{4s+1} , $s \ge 1$, is not parallelizable. $s \ge 1$, and $s \ge 1$, which are known to be parallelizable, are the only spheres which have this property.

Let α : $SO(n) \rightarrow U(n)$ and β : $U(n) \rightarrow SO(2n)$ be the standard injections. α sends a matrix $A \in SO(n)$ into itself, the entries of $\alpha(A)$ being regarded as complex numbers. β sends $C = (c_{u,v})$ into the $2n \times 2n$ matrix W, given by

$$w_{2u,2v} = w_{2u-1,2v-1} = a_{u,v}, \qquad w_{2u-1,2v} = -w_{2u,2v-1} = b_{u,v}$$

 $(1 \le u, v \le n, c_{u,v} = a_{u,v} + ib_{u,v})$. We are interested in the induced homomorphisms on homotopy groups $\alpha_*: \pi_k(SO(n)) \to \pi_k(U(n)), \beta_*: \pi_k(U(n)) \to \pi_k(SO(2n)),$

and more particularly in the composition $\beta_{\star}\alpha_{\star}$: $\pi_{k}(SO(n)) \rightarrow \pi_{k}(SO(2n))$.

LEMMA 1. In the stable range, i.e., for k < n - 1, one has $\beta_* \alpha_* = 2i_*$, where i_* : $\pi_k(SO(n)) \to \pi_k(SO(2n))$ is induced by the inclusion $i: SO(n) \to SO(2n)$.

Since by R. Bott, $\pi_{4s-1}(SO)$ and $\pi_{4s-1}(U)$ are infinite cyclic, the homomorphisms α_* : $\pi_{4s-1}(SO(n)) \to \pi_{4s-1}(U(n))$ and β_* : $\pi_{4s-1}(U(n)) \to \pi_{4s-1}(SO(2n))$ are represented (in the stable range, $4s+1 \leq n$) by multiplication with integers a_s , resp. b_s (which are determined only up to sign, since we do not specify our choice for the generators of $\pi_{4s-1}(SO)$ and $\pi_{4s-1}(U)$). From the above lemma follows the

Corollary: $a_s \cdot b_s = 2$.

It is not difficult to obtain $a_1 = 2$, $a_2 = 1$.

LEMMA 3. a_s and b_s are periodic of period 2, i.e., $a_{s+2} = a_s$, $b_{s+2} = b_s$. (This information is not needed for the theorem to be proved).

Consider now the commutative diagram in which n is to be large (2s < n):

where the rows are portions of the homotopy sequences of the fibrations $SO(2n)/SO(4s-2) = V_{2n,2n-4s+2}$ with projection p, and $U(n)/U(2s-1) = W_{n,n-2s+1}$ with projection q, respectively. β' : $U(n)/U(2s-1) \rightarrow SO(2n)/SO(4s-2)$ is induced by β : $U(n) \rightarrow SO(2n)$.

By R. Bott, $\pi_{4s-2}(U(2s-1)) \approx \mathbb{Z}/(2s-1)!\mathbb{Z}$. Hence q_* is (up to sign) the multiplication by (2s-1)!. By B. Eckmann, section 3.6, $\pi_{4s-1}(V_{2n,2n-4s+2}) \approx \mathbb{Z}_4$. For $s \geq 3$, (2s-1)! is divisible by 4, and thus $\beta'_*q_* = p_*\beta_* = 0$.

We need the following, probably well-known

LEMMA 2. If S_{4s-1} is parallelizable, then $\pi_{4s-2}(SO(4s-2)) = 0$.

Let us assume now that S_{4s-1} is parallelizable. Then p_* : $\pi_{4s-1}(SO(2n)) \rightarrow \pi_{4s-1}(V_{2n,2n-4s+2})$ is an epimorphism and hence maps a generator of $\pi_{4s-1}(SO(2n))$ into a generator of $\pi_{4s-1}(V_{2n,2n-4s+2})$. Therefore, $p_*\beta_*\epsilon_U = b_s \cdot \epsilon_V$, where ϵ_U , ϵ_V are generators of $\pi_{4s-1}(U(n))$, $\pi_{4s-1}(V_{2n,2n-4s+2})$, respectively. By Lemma 1, b_s is either 1 or 2 and hence $p_*\beta_* \neq 0$. Consequently, s < 3.

Proof of Lemma 1: Let A be the $2n \times 2n$ matrix

$$\begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix}$$

i.e., $a_{ij} = \delta_{i+n,j}$ for $1 \le i \le n$ and $a_{ij} = \delta_{i-n,j}$ for $n < i \le 2n$. Since

$$i(X) = \begin{pmatrix} X & 0 \\ 0 & E \end{pmatrix},$$

we have

$$i(X) \cdot A \cdot i(X) \cdot A = \begin{pmatrix} X & 0 \\ 0 & X \end{pmatrix}.$$

Let M be the $2n \times 2n$ matrix given by

$$m_{ij} = \begin{cases} \delta_{2i-1,j} & \text{for } 1 \leq i \leq n, \\ \delta_{2(i-n),j} & \text{for } n < i \leq 2n. \end{cases}$$

It is easily verified that if $u_1, v_1, u_2, v_2, \ldots, u_n, v_n$ are the row vectors of a $2n \times 2n$ matrix Y, then the matrix $M \cdot Y$ has the row vectors $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n$. This implies, using $(Y \cdot M')' = M \cdot Y'$ that if Y has column vectors $u'_1, v'_1, u'_2, v'_2, \ldots, u'_n, v'_n$, then $Y \cdot M'$ has the column vectors $u'_1, \ldots, u'_n, v'_1, \ldots, v'_n$. From this it follows that

$$\beta\alpha(X) = M \cdot i(X) \cdot A \cdot i(X) \cdot A \cdot M'$$

for any matrix $X \in SO(n)$. Notice that $|A| = (-1)^n$ and $|M| = (-1)^{n(n-1)/2}$. Since we are interested in the stable range (k-1 < n), there is no loss of generality in assuming n divisible by 4. Then |A| = |M| = +1. From the existence of paths from A and M to the unit $2n \times 2n$ matrix, follows: $\beta \alpha$ is homotopic to the map $SO(n) \to SO(2n)$, which sends X into $i(X) \cdot i(X) = i(X^2)$. By B. Eckmann, 4 Satz II, for any map $f: S_k \to SO(n)$, the map f^2 given by $f^2(x) = [f(x)]^2$ represents $2\{f\}$, where $\{f\}$ is the homotopy class of f. This proves Lemma 1.

Proof of Lemma 2: By P. J. Hilton and J. H. C. Whitehead, Lemma (4.12), if S_{4s-1} is parallelizable, then $\alpha_{4s-2} = \phi_*\mu$, where α_{4s-2} is the generator of $\pi_{4s-1}(S_{4s-2})$ the homomorphism ϕ_* : $\pi_{4s-1}(SO(4s-1)) \rightarrow \pi_{4s-1}(S_{4s-2})$ is induced by the projection ϕ : $SO(4s-1) \rightarrow S_{4s-2}$ and μ is some element in $\pi_{4s-1}(SO(4s-1))$. From the homotopy sequence of $SO(4s-1)/SO(4s-2) = S_{4s-2}$, i.e.,

and the fact that ϕ_* is an epimorphism, it follows that

$$\pi_{4s-2}(SO(4s-2)) \approx \pi_{4s-2}(SO(4s-1))$$

(if S_{4s-1} is parallelizable).

Consider the homotopy sequence of $SO(4s)/SO(4s-1) = S_{4s-1}$,

 $\dots \to \pi_{4s-1}(SO(4s)) \xrightarrow{\psi_*} \pi_{4s-1}(S_{4s-1}) \to \pi_{4s-2}(SO(4s-1)) \to \pi_{4s-2}(SO(4s)) = 0.$ Since S_{4s-1} is assumed to be parallelizable, ψ_* is an epimorphism and therefore, $\pi_{4s-2}(SO(4s-1)) = 0$. This proves Lemma 2.

Proof of Lemma 3: By formula (3.4) of R. Bott, the space of loops over SO has the same homotopy groups as the quotient space SO/U. Thus for 2s < n,

$$\pi_{4s-1}(\Omega SO(2n)) \approx \pi_{4s-1}(SO(2n)/U(n)).$$

However, $\pi_{4s-1}(\Omega SO(2n)) \approx \pi_{4s}(SO(2n))$, this latter group being 0 for odd s and \mathbb{Z}_2 for s even. Since the order of $\pi_{4s-1}(SO(2n)/U(n))$ is clearly equal to b_s , we obtain: $b_s = 1$ or 2 according as to whether s is odd or even, respectively. The equality $a_s \cdot b_s = 2$ yields the result for a_s , which could also have been obtained directly using (3.3) of Bott.¹

LEMMA 4. For s odd ≥ 3 , the generator of $\pi_{4s-1}(S_{4s-2})$ does not belong to $Im \ \phi_*$, where ϕ_* : $\pi_{4s-1}(SO(4s-1)) \rightarrow \pi_{4s-1}(S_{4s-2})$ is induced by the natural projection.

Proof: We have seen that $s \ge 3$ implies $p_*\beta_* = 0$. By Lemma 3, β_* is an epimorphism for s odd. Consequently, p_* must be trivial and $\pi_{4s-2}(SO(4s-2)) \approx Z_4$. The exact homotopy sequence of the fibration $SO(4s-1)/SO(4s-2) = S_{4s-2}$ then yields the result.

The original version of this paper did not contain Lemmas 3 and 4. Lemma 3 was also observed by the referee. I understand from R. Bott that J. Milnor has also obtained our theorem.

- ¹ R. Bott, The Stable Homotopy of the Classical Groups, these Proceedings, 43, 933-935, 1957.
- ² R. Bott, The Pontryagin Ring of $\Omega(G)$, talk at Princeton University on December 5, 1957.
- ³ B. Eckmann, "Systeme von Richtungsfeldern in Sphären und stetige Lösungen komplexer linearer Gleichungen," Comm. Math. Helv., 15, 1-26, 1942.
 - ⁴ B. Eckmann, "Über die Homotopiegruppen von Gruppenräumen," *ibid.*, 14, 234–256, 1941.
 ⁵ B. Eckmann, "Espaces fibrés et homotopie," *Colloque de Topologie* (Bruxelles, 1950).
- ⁶ P. J. Hilton and J. H. C. Whitehead, "Note on the Whitehead Product," Ann. Math., 58, 429-442, 1953.
- ⁷ N. E. Steenrod and J. H. C. Whitehead, "Vectors Fields on the n-Sphere," these Proceedings, **37**, 58–63, 1951.
- ⁸ G. Whitehead, "Homotopy Properties of the Real Orthogonal Groups," Ann. Math., 43, 132-146, 1942.